819 research outputs found

    Modelling and control of a high redundancy actuator

    Get PDF
    The high redundancy actuation concept is a completely new approach to fault tolerance, and it is important to appreciate that it provides a transformation of the characteristics of actuators so that the actuation performance (capability) degrades slowly rather than suddenly failing, even though individual elements themselves fail. This paper aims to demonstrate the viability of the concept by showing that a highly redundant actuator, comprising a relatively large number of actuation elements, can be controlled in such a way that faults in individual elements are inherently accommodated, although some degradation in overall performance will inevitably be found. The paper introduces the notion of fault-tolerant systems and the highly redundant actuator concept. Then a model for a two by two configuration with electro-mechanical actuation elements is derived. Two classical control approaches are then considered based on frequency domain techniques. Finally simulation results under a number of faults show the viability of the approach for fault accommodation without re-configuratio

    spl(2,1) dynamical supersymmetry and suppression of ferromagnetism in flat band double-exchange models

    Full text link
    The low energy spectrum of the ferromagnetic Kondo lattice model on a N-site complete graph extended with on-site repulsion is obtained from the underlying spl(2,1) algebra properties in the strong coupling limit. The ferromagnetic ground state is realized for 1 and N+1 electrons only. We identify the large density of states to be responsible for the suppression of the ferromagnetic state and argue that a similar situation is encountered in the Kagome, pyrochlore, and other lattices with flat bands in their one-particle density of states.Comment: 7 pages, 1 figur

    Black Hole Formation and Classicalization in Ultra-Planckian 2 -> N Scattering

    Get PDF
    We establish a connection between the ultra-Planckian scattering amplitudes in field and string theory and unitarization by black hole formation in these scattering processes. Using as a guideline an explicit microscopic theory in which the black hole represents a bound-state of many soft gravitons at the quantum critical point, we were able to identify and compute a set of perturbative amplitudes relevant for black hole formation. These are the tree-level N-graviton scattering S-matrix elements in a kinematical regime (called classicalization limit) where the two incoming ultra-Planckian gravitons produce a large number N of soft gravitons. We compute these amplitudes by using the Kawai-Lewellen-Tye relations, as well as scattering equations and string theory techniques. We discover that this limit reveals the key features of the microscopic corpuscular black hole N-portrait. In particular, the perturbative suppression factor of a N-graviton final state, derived from the amplitude, matches the non-perturbative black hole entropy when N reaches the quantum criticality value, whereas final states with different value of N are either suppressed or excluded by non-perturbative corpuscular physics. Thus we identify the microscopic reason behind the black hole dominance over other final states including non-black hole classical object. In the parameterization of the classicalization limit the scattering equations can be solved exactly allowing us to obtain closed expressions for the high-energy limit of the open and closed superstring tree-level scattering amplitudes for a generic number N of external legs. We demonstrate matching and complementarity between the string theory and field theory in different large-s and large-N regimes.Comment: 55 pages, 7 figures, LaTeX; v2: typos removed; final version to appear in Nucl. Phys.

    Harpsichord Chamber Music at the University of Dayton

    Get PDF
    News release announces Julane Rodgers and other faculty members will give a program of Baroque and contemporary chamber music

    New modelling technique for aperiodic-sampling linear systems

    Full text link
    A general input-output modelling technique for aperiodic-sampling linear systems has been developed. The procedure describes the dynamics of the system and includes the sequence of sampling periods among the variables to be handled. Some restrictive conditions on the sampling sequence are imposed in order to guarantee the validity of the model. The particularization to the periodic case represents an alternative to the classic methods of discretization of continuous systems without using the Z-transform. This kind of representation can be used largely for identification and control purposes.Comment: 19 pages, 0 figure

    Detecting and diagnosing faults in dynamic stochastic distributions using a rational b-splines approximation to output PDFs

    Get PDF
    Describes the process of detecting and diagnosing faults in dynamic stochastic distributions using a rational b-splines approximation to output PDFs

    Fecal Metaproteomics Reveals Reduced Gut Inflammation and Changed Microbial Metabolism Following Lifestyle-Induced Weight Loss

    Get PDF
    Gut microbiota-mediated inflammation promotes obesity-associated low-grade inflammation, which represents a hallmark of metabolic syndrome. To investigate if lifestyle-induced weight loss (WL) may modulate the gut microbiome composition and its interaction with the host on a functional level, we analyzed the fecal metaproteome of 33 individuals with metabolic syndrome in a longitudinal study before and after lifestyle-induced WL in a well-defined cohort. The 6-month WL intervention resulted in reduced BMI (−13.7%), improved insulin sensitivity (HOMA-IR, −46.1%), and reduced levels of circulating hsCRP (−39.9%), indicating metabolic syndrome reversal. The metaprotein spectra revealed a decrease of human proteins associated with gut inflammation. Taxonomic analysis revealed only minor changes in the bacterial composition with an increase of the families Desulfovibrionaceae, Leptospiraceae, Syntrophomonadaceae, Thermotogaceae and Verrucomicrobiaceae. Yet we detected an increased abundance of microbial metaprotein spectra that suggest an enhanced hydrolysis of complex carbohydrates. Hence, lifestyle-induced WL was associated with reduced gut inflammation and functional changes of human and microbial enzymes for carbohydrate hydrolysis while the taxonomic composition of the gut microbiome remained almost stable. The metaproteomics workflow has proven to be a suitable method for monitoring inflammatory changes in the fecal metaproteome

    Circulating omentin as a novel biomarker for colorectal cancer risk: Data from the EPIC - Potsdam cohort study

    Get PDF
    Omentin is a novel biomarker shown to exert metabolic, inflammatory and immune-related properties, and thereby could be implicated in the risk of colorectal cancer (CRC). So far, the association between omentin and CRC risk has not been evaluated in prospective cohort studies. We investigated the association between pre-diagnostic plasma omentin concentrations and risk of CRC in a case-cohort comprising 251 incident CRC cases diagnosed over a mean follow-up time of 10.4 years and 2,295 persons who remained free of cancer in the European Prospective Investigation into Cancer and Nutrition-Potsdam study. Hazard ratios as a measure of relative risk (RR) and 95% confidence intervals (CI-s) were computed using a Prentice modified Cox regression. In a model adjusted for established CRC risk factors, age, sex, education, dietary and lifestyle factors, body mass index (BMI) and waist circumference, higher omentin concentrations were associated with a higher CRC risk (RRcontinuously per doubling of omentin concentrations=1.98, 95%CI: 1.45-2.73). Additional adjustment for metabolic biomarkers, including glycated hemoglobin, high-density lipoprotein cholesterol and C-reactive protein, did not alter the results. In stratified analyses, the positive association between omentin and CRC risk was retained in participants with BMI< 30 (RRcontinuously per doubling of omentin concentrations=2.26; 95%CI: 1.57-3.27), whereas among participants with BMI{greater than or equal to} 30 no association was revealed (RRcontinuously per doubling of omentin concentrations =1.07; 95%CI: 0.63-1.83; Pinteraction= 0.005). These novel findings provide the first lines of evidence for an independent association between pre-diagnostic omentin concentrations and CRC risk and suggest a potential interaction with the adiposity state of the individual

    Hardware-in-the-loop performance analysis of a railway traction system under sensor faults

    Get PDF
    Fault mode and effects analysis (FMEA) has been used during decades for analysing the effects of faults in different applications. Initially, FMEA based on risk priority numbers provided information about the effects in the system, but during the last years different approaches have been developed to obtain a more robust risk evaluation. The proposed enhanced FMEA can provide the quantitative effects of sensor faults in a railway traction drive, in variables such as torque, current and voltages. In addition to the previous work, quantitative effects on overall performance indicators, such as energy efficiency and comfort, are obtained too. Hardware-in-the-loop (HIL)-based fault injection approach has been used to generate fault scenarios. The test platform is composed of a real-time simulator and a commercial traction control unit for a railway application
    • 

    corecore